Остроградского формула - definitie. Wat is Остроградского формула
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Остроградского формула - definitie

ФОРМУЛА, СВЯЗЫВАЮЩАЯ ДИВЕРГЕНЦИЮ ВЕКТОРНОГО ПОЛЯ С ЕГО ПОТОКОМ ЧЕРЕЗ ГРАНИЦУ ОБЛАСТИ
Теорема Остроградского — Гаусса; Теорема Остроградского-Гаусса; Остроградского формула; Формула Гаусса-Остроградского; Формула Остроградского-Гаусса; Теорема Гаусса — Остроградского; Теорема Остроградского - Гаусса; Формула Гаусса - Остроградского; Формула Остроградского; Гаусса–Остроградского формула

Остроградского формула         

формула, дающая преобразование интеграла, взятого по объёму Q, ограниченному поверхностью S, в интеграл, взятый по этой поверхности:

;

здесь X, Y, Z - функции точки (х, у, z), принадлежащей трёхмерной области Ω. О. ф. найдена М. В. Остроградским (См. Остроградский) в 1828 (опубликована в 1831). В векторной форме О. ф. имеет вид:

,

где р - вектор поля, заданного в области Ω; dτ - элемент объёма; n - единичный вектор внешней нормали к поверхности Σ; dσ - элемент этой поверхности. В гидродинамическом истолковании О. ф. устанавливает равносильность двух способов учёта того количества жидкости, которое вытекает из оболочки Σ в единицу времени: 1) исходя из "производительности" точечных источников, заполняющих область Ω (левая часть равенства); 2) исходя из скоростей частиц жидкости в момент их прохождения через оболочку Σ (правая часть равенства). Формула была дана Остроградским (1834, опубликована в 1838) также и в более общем виде - для интеграла, распространённого на n-мерную область.

ОСТРОГРАДСКОГО ФОРМУЛА         
связывает тройной интеграл (см. Кратный интеграл) по некоторому объему с поверхностным интегралом по поверхности, ограничивающей этот объем. Предложена М. В. Остроградским (1828-31).
Формула Гаусса — Остроградского         
Фо́рмула Гаусса —Остроградского связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.

Wikipedia

Формула Гаусса — Остроградского

Фо́рмула Гаусса —Остроградского связывает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность и интеграл от дивергенции этого поля по объёму, ограниченному этой поверхностью.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.